On the Brezis-Nirenberg Problem with a Kirchhoff Type Perturbation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Brezis-nirenberg Problem for Nonlocal Systems

By means of variational methods we investigate existence, non-existence as well as regularity of weak solutions for a system of nonlocal equations involving the fractional laplacian operator and with nonlinearity reaching the critical growth and interacting, in a suitable sense, with the spectrum of the operator.

متن کامل

A Note on Borderline Brezis-nirenberg Type Problems

where LAu = div(A(x)∇u) and La,pu = div(a(x)|∇u| ∇u) are, respectively, linear and quasilinear uniformly elliptic operators in divergence form in a non-smooth bounded open subset Ω of R, 1 < p < n, p∗ = np/(n − p) is the critical Sobolev exponent and λ is a real parameter. Both problems have been quite studied when the ellipticity of LA and La,p concentrate in the interior of Ω. We here focus o...

متن کامل

THE BREZIS-NIRENBERG PROBLEM FOR THE FRACTIONAL p-LAPLACIAN

We obtain nontrivial solutions to the Brezis-Nirenberg problem for the fractional p-Laplacian operator, extending some results in the literature for the fractional Laplacian. The quasilinear case presents two serious new difficulties. First an explicit formula for a minimizer in the fractional Sobolev inequality is not available when p 6= 2. We get around this difficulty by working with certain...

متن کامل

The Brezis-nirenberg Type Problem Involving the Square Root of the Laplacian

We establish existence and non-existence results to the BrezisNirenberg type problem involving the square root of the Laplacian in a bounded domain with zero Dirichlet boundary condition.

متن کامل

The Brezis–nirenberg Problem for the Laplacian with a Singular Drift in R and S

We consider the Brezis–Nirenberg problem for the Laplacian with a singular drift for a (geodesic) ball in both R and S, 3 ≤ n ≤ 5. The singular drift we consider derives from a potential which is symmetric around the center of the (geodesic) ball. Here the potential is given by a parameter (δ say) times the logarithm of the distance to the center of the ball. In both cases we determine the exac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Nonlinear Studies

سال: 2015

ISSN: 2169-0375,1536-1365

DOI: 10.1515/ans-2015-0107